Pulse. Petawatt Users, Lasers, Sources and Experiments
print

Links and Functions

Breadcrumb Navigation


Content

Applications of High-Intensity Laser-Pulses (SS)

Content 

1 Electrons in strong laser fields

  • 1.1 Descriptionoflaserfields
  • 1.2 Electrons in a plane wave: classical treatment
  • 1.3 Electrons in a plane wave: relativistic treatment
  • 1.4 Solution to "relativistic eqn. of motion" and "energy eqn."
  • 1.4.1 Equation of motion: component-wise
  • 1.4.2 Energye quation: component-wise
  • 1.5 The Lawson-Woodward theorem
  • 1.6 Ponderomotive force
  • 1.6.1 Microscopic derivation of ponderomotive force: (classical, nonrelativistic)
  • 1.6.2 Ponderomotive force: relativistic case

2 Ionization mechanisms

  • 2.1 Photoelectric effect
  • 2.2 Multiple Photon Ionization (MPI)
  • 2.3 Tunnel ionization
  • 2.4 Barrier Suppression Ionization (BSI)

3 Basic plasma physics

  • 3.1 Definition of the plasma state
  • 3.2 Definition of temperature
  • 3.3 Debye shielding
  • 3.4 Plasma frequency
  • 3.5 E-M waves in a plasma
  • 3.6 Ionization defocusing

4 Nonlinear relativistic optics

  • 4.1 Relativistic self-focusing
  • 4.2 Self-phase modulation and pulse compression

5 Electron acceleration in underdense plasmas

  • 5.1 Laser Wakefield Acceleration (LWFA)
  • 5.1.1 Generation of a plasma wave
  • 5.1.2 Calculation of long. E-fields in the plasma wave
  • 5.1.3 Dephasing length

6 Ion acceleration

  • 6.1 Electron acceleration on solid surfaces
  • 6.1.1 Direct Laser Acceleration (DLA)
  • 6.1.2 Coupling laser energy into electrons
  • 6.2 Ion acceleration from solids
  • 6.2.1 Target Normal Sheath Acceleration (TNSA)
  • 6.2.2 Radiation Pressure Acceleration (RPA)
  • 6.3 High Harmonic Generation (HHG)